
Whitepaper PHIN Applications Portal

December 5, 2007 Page 1 of 22

PHIN Applications Portal

By Walt Davis

Oregon Department of Human Services
Systems Architecture

Whitepaper PHIN Applications Portal

December 5, 2007 Page 2 of 22

Introduction... 3
Business Drivers ... 3
Design Goals... 3
Dynamic Content Generation ... 4
The Portal Interface... 5

Shared Directory ... 6
User Profile Management ... 6
Self Registration.. 6
Forgotten Password Retrieval ... 6
Forgotten User ID Retrieval.. 6
Application Launcher.. 7
Application Manager .. 7
Application Access Authorization .. 7
External Credentials Manager... 7
Strong Security.. 7

The Directory API... 7
Repeatable Construction Process.. 8
Summary ... 9
Appendix A: Questions & Answers.. 10
Appendix B: HTML.Template.java.. 13
Appendix C: Directory Schema.. 14
Appendix D: WebEdifice.. 17
Appendix E: The Directory API ... 19
Appendix F: Integration Options .. 20
Appendix H: ‘Account Status’ State Machine.. 21
Appendix I: Access Control Interaction Diagram .. 22

Whitepaper PHIN Applications Portal

December 5, 2007 Page 3 of 22

Introduction
The Applications Portal and its underlying building blocks represent a comprehensive
and reusable solution to web-based development using Java technologies.

The first couple of sections discuss Business Drivers and Design Goals influencing the
portals construction.

Remaining sections serve as introductions to the understanding of several foundational
points of view: Dynamic Content Generation, The Portal Interface, The Directory API,
and a Repeatable Construction Process.

Business Objectives
While the business goals are often hard to identify; for the Applications Portal these may
be represented by the following interpretations:

 Adopt industry and department standards that lead to common goals.
 Create solutions that make it easier for systems to be integrated.
 Modernization through web based applications.
 Reduce confusion for users who currently need to access web-based applications

from multiple locations, i.e., central location from which to access applications.
 Improve efficiency through a simplified sign-on, thereby reducing the need for

multiple passwords.
 Shared directories.
 Enterprise level solutions.
 Website branding that is meaningful to the user base.
 Look and feel consistent with State web applications.
 Provide administrative tools for integrated functions common to all applications.
 Authenticate users through the State's Identity Management and Access Control

(TIM/TAM) where appropriate.

As part of the development processes these drivers where used to help create design
goals.

Design Goals
Much of the design motivation comes from the WebMD/Healtheon content delivery
platform for healthcare consumer portals (MSN, Lycos, Excite, and Readers Digest).

Key Design Goals (not in order of importance):
1. Low learning curve for all levels of programming experience.
2. Reduced maintenance and future development costs.
3. Java developer and HTML designer equivalence.
4. Minimize HTML application logic.
5. Equal support for application and web/portal development.
6. Strong security.

Whitepaper PHIN Applications Portal

December 5, 2007 Page 4 of 22

7. Share user profiles across applications and portal.
8. Central place from which to access web applications.
9. Simplified and single sign-on.
10. Customization of portal instances.
11. Comprehensive and well organized reusable building blocks.

Dynamic Content Generation
Facing many decisions around what frameworks to use and having gained valuable
experience in porting the NBS (NEDSS Base System), the NEDSS (National Electronic
Disease Surveillance System) team had been looking for alternative solutions to the more
widely accepted and published industry standard frameworks such as EJB’s, Struts,
Caster, Velocity, Hibernate, and so forth.

These frameworks often contain huge code bases that are rigid in nature. Some are unable
to meet our design goals. A good example of this is goal 3. Typically once a web
designer has built the HTML and a Java developer has integrated it into the application
using Struts; then the web designer can no longer maintain the HTML. This seriously
impacts the web designer’s ability to control the look & feel of a website and make
modifications without the help of a Java programmer.

As a new member of the team and having successfully completed several full life cycle
web based Java products I was able to offer alternatives. One of these being the
construction of a web UI framework for generating dynamic content in a way similar to
WebMD’s platform.

To do this we needed to parse HTML and read an embedded language for inserting
dynamic content. This is much different than the standard tag libraries found in other
frameworks. Here you actually embed another language within the HTML that allows for
looping and conditional logic yet limits application logic.

The risk of building the parsing portion ourselves was too high. However, with some
research the team found HTML.Template.java. This was a lightweight HTML parser that
did exactly what we needed. The templating language was simple and provided powerful
insertion techniques. With this all that remained was to provide wrapper functionality for
organization and modeling of an applications’ user interface logic.

Whitepaper PHIN Applications Portal

December 5, 2007 Page 5 of 22

This would be the 4th generation of such a framework whereby each generation’s
development has been improved upon by separate teams of developers. Typically each
developer having experience in Java, existing frameworks such as Struts, or many early
home brewed JSP (Java Server Pages) frameworks.

Reusing this experience the NEDSS team was able to build a simplified framework for
dynamic content delivery called WebEdifice. This framework unlike industry standard
frameworks does a better job at meeting design goals 1 – 5, 10, and 11.

One draw back to using this framework is compared to industry supported frameworks
there is little literature available to support its learning. On the other hand with the aid of
someone familiar with the framework; at least one project has demonstrated it’s possible
to bring up a website with relatively little learning. Since this also meets all design goals
WebEdifice appears to be a viable solution.

The Portal Interface
It is important to recognize that there are different types of portals.

What makes the Applications Portal unique is its design for web-based applications. It
provides common and reusable features for managing web applications that would
otherwise be client/server. This is much different than a portal such as iGoogle (a Widget
Portal) or WebMD (a Content Management Portal); likewise, neither are Google and
WebMD the same type of portal.

In simple terms the Applications portal is a common web interface through which to
access a businesses web-based client/server applications and having the following
key features:

1. Shared Directory.
2. User Profile Management.
3. Self Registration.
4. Forgotten Password Retrieval.
5. Forgotten ID Retrieval.
6. Application Launcher.
7. Application Manager.
8. Application Access Authorization.
9. External Credentials Manager.
10. Strong Security.

Because the Applications Portal uses a highly dynamic content delivery mechanism it is
relatively simple to launch multiple instances. Each instance may have its own directory,
look & feel, security requirements, and applications, or these things may be shared. To
illustrate this flexibility consider the meaning of PHIN. Its purpose is to brand the portal
as being the Oregon Public Health Information Network portal. If so desired the HTML
designer could very easily have change this to FamillyNet.

Whitepaper PHIN Applications Portal

December 5, 2007 Page 6 of 22

Shared Directory
A shared directory contains the most common profile information of any user. This is
defined by the Open Group RFC2251-RFC2256 and RFC1274. The Open Group in
conjunction with many companies around the world has defined this as a standard for all
to use.

By using the most common attributes for directory entries the directory can be used in the
widest possible scope. This level of scope is considered the enterprise view. Specialized
directories may exist but they should reference and extend an authoritative (or master)
directory.

Within the applications themselves a profile may also be extended to include additional
information. This information should be contained within the application that cares about
it. The importance of doing this is not to pollute the directory with content that would
otherwise not be global. Ignoring this rule typically leads to directory bloat that over time
is increasingly difficult to work with. If the extended information is shared then a better
design is to provide a service within the application that allows other applications access.

User Profile Management
The Applications Portal contains an administrative page for managing all user profiles.
Procedures such as account suspension and reset are done from this page. Another page
allows users to update their own personal information.

Self Registration
If someone accessing the portal does not yet have an account they may themselves create
one. A temporary password is emailed ensuring a valid email address. Upon accessing
the portal for the first time users must first change their temporary password. Typically
you only have a few days to do this before account suspension.

Forgotten Password Retrieval
When a user forgets his/her password it can be retrieve without having to call support.
The user will be prompted to enter personal information that only he/she knows and a
temporary password will be emailed. Upon logon the user will use a temporary password
and is immediately asked to change it.

Forgotten User ID Retrieval
Users typically do not forget their user ID but just in case they do it can be retrieved. The
user is asked for personal information that only they would know and the ID is emailed
back.

Whitepaper PHIN Applications Portal

December 5, 2007 Page 7 of 22

Application Launcher
The application launcher is the main or home page of a user. The home page lists out
each application that the user has access to with links and descriptions. Another page
allows the launcher to be configured so only to contain applications that are of interest.

Application Manager
Administrators have access to a page that lets them add/remove/disable applications.
Applications can be simple links to other websites or they can be links to applications
that have been fully integrated using shared features of the portal. When an application is
fully integrated then it can take advantage of the Application Access Authorization
feature of the portal.

Application Access Authorization
Some applications require approval in which case the approving person is emailed an
application access request. Once approved the user is notified by email that access has
been granted and it will be displayed with within the launcher.

External Credentials Manager
This is an un-built but scheduled feature of the portal that allows a user to maintain logon
credentials for external websites. This feature allows external applications to be
integrated with minimum effort and once completed will simulate single-sing-on to
applications with different security mechanisms.

Strong Security
As we will see in the next section the Applications Portal has strong security through a
powerful directory API.

The Directory API
The importance of a directory API (Application Program Interface) is to remove from the
application developer the need to understand backend LDAP (Light Weight Directory
Access Protocol) connectivity and from having to implement missing functionality.

This would be the job of a security API developer. Not only does developing such an API
require its own effort, it makes no sense to reprogram this functionality every time; doing
so would surely make it difficult if not impossible to provide any kind of standardization
across applications.

By building the API with a re-implementable interface it makes dealing with changes in
directory technologies more manageable by not having to modify the applications
themselves, i.e., build another implementation of the API and re-deploy libraries.

At present there is one implantation of this API for LDAP backbends adhering to the
Open Group InetOrgPerson definition. It has been tested with several LDAP directory
vendors including OpenLDAP, eDirectory, and iPlanet.

Whitepaper PHIN Applications Portal

December 5, 2007 Page 8 of 22

Key features of this implementation of the directory API are:

1. LDAP compliant directory.
2. State machine driven security policies.
3. Utilizes an attribute re-mapping engine.
4. Role based access.
5. Stores the most common and widely accepted attribute data.
6. Implements a reusable API.
7. Meets or exceeds DHS security policies.
8. Single-sign-on.
9. Single credential set.
10. Quasi-two factor authentication (question/response).
11. LDAP vendor neutral.
12. Hashed password.

There is a separate more technical document that discusses the security and
implementation details of the API; therefore, we will not be discussing such details here.

Extending the directory definition for InetOrgPerson to include additional attributes is
relatively easy; however, the more a directory schema deviates from the Open standard
then the more advisable it is to implement a custom schema in a separate directory and
link the two directories using an object UID.

Repeatable Construction Process
One portal application was abstracted into a foundational set of classes that could be used
to instantly bring up a new application.

At least two applications have been produced using these classes; in one case developers
with little Java experience where able to create a functional website in only a few days.

During the creation of these classes the flag ship application from which all others where
to be modeled after was on an accelerated development path. This means that the
abstracted classes have limited integration with The Portal Interface.

Whitepaper PHIN Applications Portal

December 5, 2007 Page 9 of 22

Summary
Although adoption has been slow other departments within DHS are using this solution to
provide their needs. A good example of this is the DHS Eligibility project. They where
able to rapidly build a HIPPA based transaction service. The core of this web service was
functional within days. This then gave the team much needed time to focus on transaction
processing.

As we have seen the Applications Portal represents an elegant solution specifically
targeting the development of web applications that would otherwise be client/server.

A remaining aspect to the continued success of the Applications Portal is acceptance and
adoption of its solution by those maintaining it and customer base using it.

Given the right circumstances and under the right leadership other departments within
DHS can experience the same level of success as seen in the PHIN Applications Portal;
however, make no mistake in thinking that here lays a golden hammer to all problems
because there will always be an exception.

Success does not necessarily dictate adoption of The Portal Interface. Perhaps just The
Directory API or the Dynamic Content Generator is useful, after all they do provide
solutions to common problems.

Whitepaper PHIN Applications Portal

December 5, 2007 Page 10 of 22

Appendix A: Questions & Answers
Q. When everyone wants to add their own attributes to the directory that have little
use beyond the concerning application how do you prevent directory bloat?
A1. The more common solution is to use a master/slave architecture and create a master
directory that only stores common attributes to all then slave directories are created that
can be; objects would be linked back to the master using a UID.
A2. A more organized approach is to have a single master directory and let each
application extend the object definitions. If other applications need this information then
it may be access through a service. It’s still a master/slave architecture but you have
reduced the complexity to maintaining one directory and it promotes a better division of
responsibilities among applications in a distributed environment.

Q. How easy would it be to create a new implementation of the directory API?
A. That entirely depends on the complexity of the backend directory technology and its
deviation from open LDAP standards.

Q. Does portal integration obviate the need for a web application to have its own
authentication mechanism? ... its own login page?
A. An application may have its own mechanism, use The Directory API, or both. Some
apps have a configuration setting that lets them redirect back to the portal logon so to
achieve a seamless look and feel. On the other hand if the portal is down its nice to still
be able to use your applications.

Q. If an application is integrated with the portal, can it still be accessed
independently of the portal? Is this advisable?
A. Yes. This of course is a design choice. By redirecting back to the portal you save
development time by not having to implement another logon page. On the other hand if
you do not want this point of failure then you should add your own logon page. Either
way when using the API the mechanism is the same.

Q. Is there extra work involved to be able to access it independently of the portal in
addition to within the portal?
A. There are foundational classes and HTML templates available for use so while there is
additional work, it should be minimal.

Q. Is it possible for an application to use a completely different authentication
mechanism but still be integrated?
A. From a hyper link perspective yes; otherwise, there are plans to build a credentials
manager that would use header injection when redirecting to external applications.

Whitepaper PHIN Applications Portal

December 5, 2007 Page 11 of 22

Q. If we were to upgrade the directory API to full two-factor authentication, would
portal-integrated applications benefit at no additional cost?
A. No. The current quasi-two factor form is a question/answer response and the amount
of work for the upgrade would depend on the two-factor form.

Q. Do you have any case studies of existing applications that have switched from a
different proprietary or one-off security module to using the directory API, and the
associated costs?
A. Nothing substantial but like anything else the benefits should be weighed against the
costs. If costs are greater than the benefits and with limited resources time is probably
better spent elsewhere.

Q. Do you have any case studies of existing applications that have been integrated
post-production into the portal, and the associated costs?
A. There has been some testing with external application on completely different
authentication mechanisms whereby they where integrated with header injection. The
work effort was minuscule and in some cases required no changes to the external
application.

Q. Does the design of the portal itself, along with its integration requirements;
encourage good web interface design practices? ... web application design
practices?
A. Yes. Special care was taken to develop well organized and meaningfully components
using object oriented practices. And special attention was giving to its design ensuring
that web designer retains ownership over Java developer.

Q. What are the portal integration requirements, web interface wise?
A. There are no per say requirements but having a similar look & feel probably makes for
a less confusing user experience. In practice it will not always be beneficial to integrate
look & feel but instead pick the low hanging fruit such has single credential set and sign
on.

Q. Do all business domains have to share the same directory and portal user
interface?
A. No. In fact if you have well defined domains each having its own set of applications
then the needs of those domains are often different to a point that makes it more
manageable to have multiple instantiations.

Q. Regarding the embedded HTML language could you also not have achieved the
same thing with JSP?
A. Yes you could; however, web designers do not make good java programmers and JSP
supports placing too much application logic in the UI. Placing application logic in the UI
is generally thought of as a bad programming practice.

Q. How much does it costs to license HTML.Template.java?
A. Nothing, HTML.Template.java is OpenSource.

Whitepaper PHIN Applications Portal

December 5, 2007 Page 12 of 22

Q. Is it possible to do single-sign-on across applications running on different web
servers?
A. For security reasons no. Crossing web servers creates an SSL certificate issue during
session creation. And the Directory API uses session information to insure a secure
authentication. It is however possible to simulate it through header injection.

Q: Does the Directory API utilize its own session timeout separate from the SSL
connection?
A. Yes. This creates a more secure website and is part of the single-sign-on mechanism.

Q: For applications that require two factor authentications, how do they integrate
with the Portal?
A: From a practical point of view such applications must perform the authentication on
their own, in which case the Portal just serves as a central jumping point from which
applications are accessed.

Q. How much wood would a woodchuck chuck if a woodchuck would chuck wood?
A. If a woodchuck could chuck wood then a woodchuck would chuck a lot of wood.

Whitepaper PHIN Applications Portal

December 5, 2007 Page 13 of 22

Appendix B: HTML.Template.java
The following has been directly copied from http://html-tmpl-java.sourceforge.net/. It is
not a work of this documents author and is being provided as a convenience to the reader.

HTML.Template has five main tags - <tmpl_var>, <tmpl_if>, <tmpl_unless>,
<tmpl_loop> and <tmpl_include>.

The if, unless and loop tags are block tags and need to be closed with corresponding
</tmpl_if>, </tmpl_unless> and </tmpl_loop> tags.

In addition, the <tmpl_if> and <tmpl_unless> tag may have an optional <tmpl_else> part.

The <tmpl_include> tag is evaluated when the template is created, all other tags are
evaluated when the template's output is requested.

The <tmpl_var> tag is the simplest tag, and may contain a single scalar value.
<tmpl_var> can occur anywhere in the template.

Block tags may be nested, ie, an if tag may contain other tags, including other block tags.

The <tmpl_loop> tag is a bit more complicated than the other tags. It allows you to create
a section of text that will be displayed repeatedly for every item in the loop control
variable. Inside the <tmpl_loop>, you place <tmpl_var>s.

In the java, you use a Vector that contains a list of Hashtables, each representing one
record/group of <tmpl_var>s to be displayed in the loop.

The loop iterates over the vector, replacing variables in the text block with their
parameter values from each Hashtable. Loop tags create a new namespace. All code
within a loop block is evaluated for every iteration of the loop.

Whitepaper PHIN Applications Portal

December 5, 2007 Page 14 of 22

Appendix C: Directory Schema
###
Is an extension of RFC2251-RFC2256 and RFC1274 schema. #
###

Attribute Definitions
attributetype (1.3.6.1.4.1.21259.1.1.2.1 NAME 'kAcctStatus'
 DESC 'account status'
 EQUALITY caseIgnoreMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{128} SINGLE-VALUE)

attributetype (1.3.6.1.4.1.21259.1.1.2.2 NAME ('kMI' 'kMiddleInitial')
 DESC 'middle initial'
 EQUALITY caseIgnoreIA5Match
 SUBSTR caseIgnoreIA5SubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26{1} SINGLE-VALUE)

attributetype (1.3.6.1.4.1.21259.1.1.2.3 NAME 'kAppRole'
 DESC 'role based access <appName:roleName>'
 EQUALITY caseExactMatch
 SUBSTR caseExactSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{256})

attributetype (1.3.6.1.4.1.21259.1.1.2.4 NAME 'kPagerNumber'
 DESC 'work pager number'
 EQUALITY caseIgnoreMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{128} SINGLE-VALUE)

attributetype (1.3.6.1.4.1.21259.1.1.2.5 NAME 'kHomePostOfficeBox'
 DESC 'home post office box'
 EQUALITY caseIgnoreMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{128} SINGLE-VALUE)

attributetype (1.3.6.1.4.1.21259.1.1.2.6 NAME 'kHomeStreetAddress'
 DESC 'physical address of residence'
 EQUALITY caseIgnoreMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{128} SINGLE-VALUE)

attributetype (1.3.6.1.4.1.21259.1.1.2.7 NAME 'kHomeCity'
 DESC 'city of residence'
 EQUALITY caseIgnoreMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{128} SINGLE-VALUE)

attributetype (1.3.6.1.4.1.21259.1.1.2.8 NAME 'kHomeCounty'
 DESC 'county of residence'
 EQUALITY caseIgnoreMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{128} SINGLE-VALUE)

Whitepaper PHIN Applications Portal

December 5, 2007 Page 15 of 22

attributetype (1.3.6.1.4.1.21259.1.1.2.9 NAME 'kHomeState'
 DESC 'state of residence'
 EQUALITY caseIgnoreMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{128} SINGLE-VALUE)

attributetype (1.3.6.1.4.1.21259.1.1.2.10 NAME 'kHomePostalCode'
 DESC 'home postal code'
 EQUALITY caseIgnoreMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{128} SINGLE-VALUE)

attributetype (1.3.6.1.4.1.21259.1.1.2.11 NAME 'kWorkCounty'
 DESC 'county of work'
 EQUALITY caseIgnoreMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{128} SINGLE-VALUE)

attributetype (1.3.6.1.4.1.21259.1.1.2.12 NAME 'kOldPassword'
 DESC 'old passwords'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.40{128})

attributetype (1.3.6.1.4.1.21259.1.1.2.13 NAME 'kUserPassword'
 DESC 'reserved for encrypted password use: SHA, MD5, ...'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.40{128} SINGLE-VALUE)

attributetype (1.3.6.1.4.1.21259.1.1.2.14 NAME 'kPasswordUseHistory'
 DESC 'number of old passwords that are tracked'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 SINGLE-VALUE)

attributetype (1.3.6.1.4.1.21259.1.1.2.15 NAME 'kPasswordExpirationDays'
 DESC 'days before password expires'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 SINGLE-VALUE)

attributetype (1.3.6.1.4.1.21259.1.1.2.16 NAME 'kDateOfLastPasswordChange'
 DESC 'date of Last Password Change'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26{128} SINGLE-VALUE)

attributetype (1.3.6.1.4.1.21259.1.1.2.17 NAME 'kSecret'
 DESC 'quasi two-factor authentication <question:response>'
 EQUALITY caseExactMatch
 SUBSTR caseExactSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{256})

attributetype (1.3.6.1.4.1.21259.1.1.2.18 NAME 'kPasswordExpires'
 DESC 'if true then password will expire'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

attributetype (1.3.6.1.4.1.21259.1.1.2.19 NAME 'kMaxAuthFailures'
 DESC 'max number of auth failures before account is suspended'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 SINGLE-VALUE)

attributetype (1.3.6.1.4.1.21259.1.1.2.20 NAME 'kFailedAuthCount'
 DESC 'number of authentication retries'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 SINGLE-VALUE)

Whitepaper PHIN Applications Portal

December 5, 2007 Page 16 of 22

attributetype (1.3.6.1.4.1.21259.1.1.2.21 NAME 'kMinPasswordLength'
 DESC 'minimum password length'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 SINGLE-VALUE)

attributetype (1.3.6.1.4.1.21259.1.1.2.22 NAME 'kMinLogonIdLength'
 DESC 'minimum logon ID length'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 SINGLE-VALUE)

attributetype (1.3.6.1.4.1.21259.1.1.2.23 NAME 'kAuthTokenTimeout'
 DESC 'minutes before authentication tokens are expired'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 SINGLE-VALUE)

attributetype (1.3.6.1.4.1.21259.1.1.2.24 NAME 'kAuthToken'
 DESC '<timeStamp:logonID:encryptedPassword:hostIP:sessionID>'
 EQUALITY caseExactMatch
 SUBSTR caseExactSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{256})

attributetype (1.3.6.1.4.1.21259.1.1.2.26 NAME 'kPasswordResetGracePeriod'
 DESC 'number of days user has to change a reset password'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 SINGLE-VALUE)

attributetype (1.3.6.1.4.1.21259.1.1.2.27 NAME 'kSignature'
 DESC 'MD5 hash of demographic data'
 EQUALITY caseExactMatch
 SUBSTR caseExactSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{256} SINGLE-VALUE)

attributetype (1.3.6.1.4.1.21259.1.1.2.28 NAME 'kRFU'
 DESC 'Reserved for Future Use'
 EQUALITY caseExactMatch
 SUBSTR caseExactSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)

Class Definitions
objectclass (1.3.6.1.4.1.21259.1.1.2.29 NAME 'kUserProfile' SUP inetOrgPerson
 DESC 'App User context Profile'
 MAY (kMI $ kAppRole $ kPagerNumber $ mobile $ homeTelephoneNumber $

 kHomeStreetAddress $ kHomeCity $ kHomeCounty $ kHomeState $
 kHomePostalCode $ kHomePostOfficeBox $ homePostalAddress $
 kWorkCounty $ kSecret $ kFailedAuthCount $ kOldPassword $
 kAuthToken $ kUserPassword $ kAcctStatus $ kSignature $
 kDateOfLastPasswordChange $ kPasswordExpires $ kRFU))

objectclass (1.3.6.1.4.1.21259.1.1.2.30 NAME 'kOrgUnit' SUP organizationalUnit
 DESC 'App User Context Organizational Unit'
 MAY (kPasswordExpirationDays $ kMaxAuthFailures $ kMInPasswordLength $
 kMInLogonIdLength $ kPasswordUseHistory $ kAuthTokenTimeout $
 kAppRole $ title $ kPasswordResetGracePeriod $
 kRFU))

Whitepaper PHIN Applications Portal

December 5, 2007 Page 17 of 22

Appendix D: WebEdifice

WebEdifice is a framework for building web interfaces to Java applications. The NEDSS
team developed this framework during construction of eSentinel.

Its core elements are:

 Servlets - represent user roles that capture the look/feel/workflow in a roles based
or use case driven system.

 Pages - takes data from the domain model layer of a three-tier application
architecture then presents a web interface view of that data.

Whitepaper PHIN Applications Portal

December 5, 2007 Page 18 of 22

 Actions - represent things that a user will do that cause something to get done;
take data from a web form and update data in the domain model, invoke a method
within the domain model that generates a report, and so forth.

 Components - represent user interface objects that render HTML. Pages are the
basic building blocks in constructing the user interface while widgets (dropdown
boxes, entry fields, radio buttons, ...) are contained within a page and layouts
change a widgets appearance.

 Templates – represent a reusable HTML file that defines a common look and feel
for all pages using it.

The reusable components library:

Whitepaper PHIN Applications Portal

December 5, 2007 Page 19 of 22

Appendix E: The Directory API

Whitepaper PHIN Applications Portal

December 5, 2007 Page 20 of 22

Appendix F: Integration Options
There are essentially three ways in which to integrate applications with the “Applications
Portal”: 1) The Directory API, 2) header injection, and 3) directory synchronization using IDI (IBM
Directory Integrator).

Using The Directory API provides the highest degree of integration. Applications integrated with
this option are sure to have the latest information and there is no need to setup separate
processes for synchronization of data.

Header injection is perhaps the easiest way to integrate but requires the user to maintain a list of
credentials. When a user is redirected to an external system these credentials will be injected
through an http put. So the server needs to have a handler that looks for this injection and will
automatically sign the user in. This allows the appearance of single-sign-on.

For option 3 requires knowledge of where the directory information is stored and how to access it.
This information is used to setup jobs that synchronize directory data. Header injection is still
required for the appearance of single-sign-on however the user would not have to maintain a
credentials list.

Whitepaper PHIN Applications Portal

December 5, 2007 Page 21 of 22

Appendix H: ‘Account Status’ State Machine

Disable - user is no longer able to access
applications and absolutely no activity on the
account is allowed.

Enabled - the account is in good working order
and user may freely access applications.

Expired - the users password has expired and it
must be change before applications are
accessible.

Suspended - occurs when: 1) there has been a
number of failed authentication attempts and 2)
the user has not changed, within the allowed
grace period, their password after initial account
creation, account reset, or password reset.

Password has not changed
 in X number of days

disabled

suspended

enabled

expired

Disable
Account

New
Account

X + 1
failed Logon

attempts

Password
Grace Period

Exceeded

Reset
Password

Reset
Account

New Account - * creates new user account with
password equal to logon ID.

Disable Account - disables the account.

Reset Account - * when an account has been
disabled or suspended it must be reset before
returning to normal operations.

Reset Password - * changes user password to their
logon ID.

* Upon first logon user is required to change password; if
user does not do so within the allowed grace period then
account is suspended.

Actions

Days Before Password Expiration - specifies the
number of days before user is required to
change their password.

Password Grace Period - number of days user
has to change their password; applies to newly
created accounts, reset accounts, and when the
password is reset.

Max Failed Auth Attempts - specifies the max
number of failed authentication attempts that
o n c e ex ce e d e d t h e a c c o u n t b e co me s
suspended.

Constants

Number of Failed Auth Attempts - number of
consecutive failed auth attempts, is reset to zero
upon successful logon.

Date of Last Password Change - is changed when
user changes his/her password and upon account
reset but not password reset.

Account Status - tracks the state of a users account.

Variables

Password
Changed

Whitepaper PHIN Applications Portal

December 5, 2007 Page 22 of 22

Appendix I: Access Control Interaction Diagram

AccessControlClientServlet

HTTP
Response

HTTP
Request

isUserAuthenticated()

[not authenticated]
redirectToLogonPage()

isUserAuthorized()

processRequest()

HTTP
Response

HTTP
Response

[not authorized]
generateFailureResponse()

getUserID(sessionIP,sessionID)

		2007-12-05T00:34:31-0800
	Walt Davis
	I am the author of this document

